Bibliography

Reference list for the Digital Humanism Fellowship

Baru, C., DeBlanc-Knowles, T., Campbell, L., Chang, W., George, J., & Halbert, M. (2022). Open knowledge network roadmap: Powering the next data revolution (p. 28). National Science Foundation. https://nsf-gov-resources.nsf.gov/2022-09/OKN%20Roadmap%20-%20Report_v03.pdf

Bonner, S., Barrett, I. P., Ye, C., Swiers, R., Engkvist, O., Bender, A., Hoyt, C. T., & Hamilton, W. L. (2022). A review of biomedical datasets relating to drug discovery: A knowledge graph perspective. Briefings in Bioinformatics, 23(6), bbac404. https://doi.org/10.1093/bib/bbac404

Bourli, S., & Pitoura, E. (2020). Bias in knowledge graph embeddings. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 6–10. https://doi.org/10.1109/ASONAM49781.2020.9381459

Celebi, R., Uyar, H., Yasar, E., Gumus, O., Dikenelli, O., & Dumontier, M. (2019). Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings. BMC Bioinformatics, 20(1), 726. https://doi.org/10.1186/s12859-019-3284-5

Chuang, Y.-N., Lai, K.-H., Tang, R., Du, M., Chang, C.-Y., Zou, N., & Hu, X. (2022). Mitigating Relational Bias on Knowledge Graphs (arXiv:2211.14489). arXiv. https://doi.org/10.48550/arXiv.2211.14489

Du, Y., Zheng, Q., Wu, Y., Lan, M., Yang, Y., & Ma, M. (2022). Understanding gender bias in knowledge base embeddings. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1381–1395. https://doi.org/10.18653/v1/2022.acl-long.98

Ehrlinger, L., & Wöß, W. (2016). Towards a Definition of Knowledge Graphs. SEMANTiCS.

Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O., Toma, I., Umbrich, J., & Wahler, A. (2020). Introduction: What Is a Knowledge Graph? In D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J. Umbrich, & A. Wahler (Eds.), Knowledge Graphs: Methodology, Tools and Selected Use Cases (pp. 1–10). Springer International Publishing. https://doi.org/10.1007/978-3-030-37439-6_1

Ford, H., & Graham, M. (2016). Provenance, power and place: Linked data and opaque digital geographies. Environment and Planning D: Society and Space, 34(6), 957–970. https://doi.org/10.1177/0263775816668857

Ford, H., & Zuckerman, E. (2022). Writing the revolution: Wikipedia and the survival of facts in the digital age. The MIT Press.

Google Knowledge Graph. (2023). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Google_Knowledge_Graph&oldid=1132088002#cite_note-21

Hogan, A., Gutierrez, C., Cochcz, M., Melo, G. de, Kirranc, S., Pollcrcs, A., Navigli, R., Ngomo, A.-C. N., Rashid, S. M., Schmclzciscn, L., Staab, S., Blomqvist, E., d’Amato, C., Gayo, J. E. L., Ncumaicr, S., Rula, A., Scqucda, J., & Zimmermann, A. (2022). Introduction. In A. Hogan, C. Gutierrez, M. Cochcz, G. de Melo, S. Kirranc, A. Pollcrcs, R. Navigli, A.-C. N. Ngomo, S. M. Rashid, L. Schmclzciscn, S. Staab, E. Blomqvist, C. d’Amato, J. E. L. Gayo, S. Ncumaicr, A. Rula, J. Scqucda, & A. Zimmermann (Eds.), Knowledge Graphs (pp. 1–4). Springer International Publishing. https://doi.org/10.1007/978-3-031-01918-0_1

Ichikawa, J. J., & Steup, M. (2018). The Analysis of Knowledge. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2018). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2018/entries/knowledge-analysis/

Janowicz, K., Yan, B., Regalia, B., Zhu, R., & Mai, G. (2018). Debiasing Knowledge Graphs: Why Female Presidents are not like Female Popes. 5. http://ceur-ws.org/Vol-2180/ISWC_2018_Outrageous_Ideas_paper_17.pdf

Juel Vang, K. (2013). Ethics of Google’s Knowledge Graph: Some considerations. Journal of Information, Communication and Ethics in Society, 11(4), 245–260. https://doi.org/10.1108/JICES-08-2013-0028

Kejriwal, M. (2019). What Is a Knowledge Graph? In M. Kejriwal, Domain-Specific Knowledge Graph Construction (pp. 1–7). Springer International Publishing. https://doi.org/10.1007/978-3-030-12375-8_1

Kraft, A., & Usbeck, R. (2022). The lifecycle of “facts”: A survey of social bias in knowledge graphs (arXiv:2210.03353). arXiv. https://doi.org/10.48550/arXiv.2210.03353

National Science Foundation. (2021, November 18). Encouraging research on Open Knowledge Networks. https://beta.nsf.gov/funding/opportunities/encouraging-research-open-knowledge-networks

Nelson, C. A., Butte, A. J., & Baranzini, S. E. (2019). Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-11069-0

Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., & Sontag, D. (2017). Learning a Health Knowledge Graph from Electronic Medical Records. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-05778-z

San Segundo, R. (2002). A new concept of knowledge. Online Information Review, 26(4), 239–245. https://doi.org/10.1108/14684520210438688

Singhal, A. (2012, May 16). Introducing the Knowledge Graph: Things, not strings. Google | The Keyword. https://blog.google/products/search/introducing-knowledge-graph-things-not/

Weikum, G., Dong, X. L., Razniewski, S., & Suchanek, F. (2021). Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases. Foundations and Trends® in Databases, 10(2–4), 108–490. https://doi.org/10.1561/1900000064

Zhang, Y., Wang, X., Xu, Z., Yu, Q., Yuille, A., & Xu, D. (2020). When Radiology Report Generation Meets Knowledge Graph. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), Article 07. https://doi.org/10.1609/aaai.v34i07.6989

Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8

Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology, 58(4), 479–493. https://doi.org/10.1002/asi.20508